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Abstract: Efficient modeling and computation
of the nonlinear interaction of fluid with a solid
undergoing nonlinear deformation has remained
a challenging problem in computational science
and engineering. Direct numerical simulation of
the non-linear equations, governing even the
most simplified fluid-structure interaction model
depends on the convergence of iterative solvers
which in turn relies heavily on the properties of
the coupled system. The purpose of this work is
to model and simulate multi-physics applications
that involve fluid-structure interaction using a
distributed multilevel algorithm with finite
elements. The proposed algorithm is tested using
COMSOL which offers the flexibility and
efficiency to study coupled problems involving
fluid-structure interaction. Numerical results for
some benchmark fluid-structure interactions are
presented  that  wvalidate the  proposed
computational methodology for solving coupled
problems involving fluid-structure interaction is
reliable and robust.

Keywords: Fluid-Structure Interaction; Multi-
physics; Micro-Air Vehicle; Coupled Systems.

1. Introduction

The efficient solution methodology to
complex multi-physics problems involving fluid-
structure interactions (FSI) is a challenging
problem in computational sciences. Such
problems require studying complex nonlinear
interactions between the structural deformation
and the flow-field that often arise in applications
such as blood-flow interaction with an arterial
wall or computational aero-elasticity of flexible
micro-air vehicles.

In the last two decades, domain
decomposition  techniques  have  become
increasingly popular for obtaining fast and
accurate solutions of problems involving coupled
processes [1, 2, 3]. These viable domain
decomposition techniques have been shown to be
stable  mathematically and have been
successfully applied to a variety of engineering

applications [4, 5, 6]. The basic idea is to replace
the strong continuity condition at the interfaces
between the different sub-domains by a weaker
one to solve the problem in a coupled fashion.
The purpose of this paper is to develop a coupled
FSI algorithm and implement the algorithm
using COMSOL to some benchmark FSI
problems.

In section 2, we present the formulation of a
one-dimensional FSI problem using an arbitrary
Lagrangian Eulerian formulation and employ the
finite element method via COMSOL for solving
the coupled problem. In section 3, we present an
optimal control formulation of the FSI problem
for the 1-D problem presented in section 2. In
section 4, we consider a three dimensional FSI
problem with application to micro-air vehicles.

2. A Coupled One-Dimensional FSI
Model Problem

For simplicity of presentation, we first
develop the model for a one-dimensional FSI
problem that involves a structural domain
interacting with a fluid medium. The model is set
up so that initially the fluid domain occupies the
interval (—1, 0) and the elastic structure occupies
the interval (0, 1). As the fluid flow deforms the
adjacent solid, we allow the movement of the
interface to depend on the velocity of the fluid.
This is illustrated in figure 1 below.

Fluid  Structure t Fluid Structure

\ >
-1 0 1 -1 () 1

Figure 1: Undeformed and deformed
computational domains

We denote by y(f) the position of this
interface at any positive time ¢. For all values of
x in the interval (=1, y(Z)), we model the fluid

velocity v and the pressure p using a
generalization of models employed by [7] using:

vi—av, +(1+p)vv, . +ep . =f;
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In this model, & = (V) > 0 is a parameter
depending on the kinematic viscosity V of the
fluid. The constants S €[0,0.5] and
£ > O vary depending on the material properties
of the fluid. Here f ; 1s the external force on the

fluid. In this work we consider the specific case
of the Burger’s equation using the parameter
choices, a=v, f=0.5=0. It is well
known that this choice of values yields stability
of the numerical methods employed for the
problem whenever no pressure term is included.
The fluid model is coupled with an elastic
model that represents the structure. In particular,
we consider the wave equation that models the
solid displacement u of any point in the adjacent
structure from its initial position given by:

u,—Hu, = fs

Here 11> 0 and f| is the external force on

the structure. Also, the position of the interface
between the two sub-domains must satisfy the
movement at the interface for all times.

At the interface between the fluid and
structure, we enforce continuity of the fluid
velocities and the action-reaction principle:

v(7(0),1) =u,(0,1)
av (y(0),1) = pu,(0,1)

In order to account for the changing nature of
the fluid, we consider the arbitrary Lagrangian-
Eulerian (ALE) formulation [8]. This will allow
for a dynamic computational gird that avoids
extreme mesh distortion near the interface. To do
this one can move the numerical grid
independently of the fluid velocity on the fluid
domain. Defining the grid velocity as:

X .
=——(t
w 7(t)7()

Note that w(y(2),t) = y(t), w(0,¢) =0 . Thus
the grid velocity is consistent with the velocity of
the fluid at the endpoints of the fluid domain.
Additionally, we assume y(¢) €[—1,1] for all

time. The ALE form of the fluid equation that we
then solve is:

v, —av,, +(1.5v—w)vx=ff

For the boundary conditions, we let the fluid
velocity v(—1, t)=sin(0.1 7 t) and the structural
displacement u(1, t) = 0 for all times. For initial
conditions, both the fluid and the structural
domain are at rest initially.

The FSI coupled system described was
implemented in COMSOL and the results of the
finite element implementation of the model is
summarized in figure 2 that displays the plot of
the fluid velocity v and the structural velocity u,
over the time period from O to 1.

Fluid Valocity Sokd displacement velocity

Figure 2: FSI simulation using COMSOL
for time t=0 to 1.

3. Coupled FSI problem with Control

A related aspect that we consider in this work
is investigating distributed control for FSI
problems. In particular, one can study the
coupled FSI problem using an optimal control
formulation to predict the distributed control that
corresponds to a prescribed velocity Vand

displacement data # that satisfies the boundary
conditions. Specifically, we want develop a
model that predicts the force that results in the
minimization of the error in the fluid velocity
|v—"v| and the solid displacement|u — i |.
For simplicity, let us consider the one-
dimensional model problem presented in section
2 and extend it to include control aspects.

Towards this end, let us consider the related
cost functional for the associated non-linear FSI
problem (note that one can similarly consider the
linear FSI  problem by dropping the
corresponding linear terms which is not
described here ) given by:



where / and g are the Lagrange multipliers
corresponding to the fluid velocity and the solid
displacement respectively. Moreover, we also
impose the continuity of the velocities over the
coupled domain.

Proceeding using the standard optimal
control approach of minimizing the cost function
by taking the variations yields the following
auxiliary system of governing equations:

In the fluid domain —1 < x <0

PV, — v, +1.5mw — 1 0
. . ay

—pv,—ul, =15V +v-v=0

In the solid domain 0 < x <1:

PV, — it — S =0
(24

P8y~ M8 Fu—1=0

For numerical experiments, we consider a
simple solid displacement profile and the fluid
velocity profile given by:

2=0.5x(x* = 1)¢’
v =x(x* =)t

The problem was implemented in COMSOL to
yield the following velocity and displacement
profiles in the respective domains. This is
illustrated in Figures 3 and 4 where the
prescribed solution is plotted against both the
solution to the both the linear and non-linear
control problem.

Fhad Velosity Protia

b

2 1] 08 a7 08 08 ETY a3 0z ET)
Fiuid Domain x

Figure 3: Displacement profile comparing the
prescribed solid displacement with linear and
non-linear control models.
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Figure 4: Fluid-velocity profile comparing the
prescribed velocity with linear and
non-linear control models

4. A Coupled multi-dimensional FSI problem
with applications to MAVs

A Micro Air Vehicle (MAV) is a type of radio-
controlled miniature aircraft that can fly at very
low speeds. Due to the complexities of the wing
structure of a MAV, a computational model of
the aircraft wing requires a combination of many
structural elements interacting with external
fluid.

The wing typically consists of a flexible
membrane material braced with a leading edge
spar and chordwise battens (see Figure 5). The
structural model must combine the model of the
membrane material together with the model of
the rigid battens. Most current models treat the
battens as large-density membrane elements.
Modeling  this  coupled two-dimensional
structural model interacting with a three-
dimensional fluid makes the problem very
challenging.
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Figure 5: A simple model of a flexible MAV wing

In this work, we attempt to come up with a
mathematical model that can provide insight into
the dynamics of MAVs. The model presented
herein is simplistic, however, one may extend
this to accommodate other features.

In order to get an insight into the modeling
and dynamics of a MAV, let us consider a
cylindrical computational domain. In this domain
we will assume that the fluid satisfies a potential
equation and that a two-dimensional structural
model (that will represent the MAV) is a part of
one of the circular surfaces. This latter surface
will represent the outflow boundary of the
computational domain which is illustrated
below:

Figure 6: Computational domain for MAVs

Let the computational domain be partitioned into
three sub-domains €2, i=1,2,3. Let €,

1
represent the cylinder in the computational
domain where the following governing equations
hold:

Ag=0 in Q,
V$-i=0 on T'y

Here F}V corresponds to the lateral surface of

the cylinder where Neumann boundary
conditions are prescribed.

The outflow part of the computational
domain consist of the following sub-domains:

F}) corresponds to the outflow region that is not

a part of the structural domain; €2, corresponds
to the structural domain that involves the three
battens; Q1 corresponds to the structure (shaded
grey) that does not involve the three battens. We
will assume the following adsorption condition:

Vg-ni=—ag on F/O

where a is a constant. Also, F; corresponds to

the inflow surface where we prescribe:

V§-ii=—0.1+0.025sinQa) on T

For the structural model of the MAV that is
modeled via the sub-domains €2 and €2, we

consider the following governing membrane
equations for the deflection of the membrane w:

Po W, — EjAw = A in €,
(Po+p)W,—E,Aw + Eyv, =—p ¢, in Q,

W
v=w, +&Av in Q,UQ,

where E, E| are the constants corresponding to
the elastic modulus and second moment of area
for each of the sub-domains Q1 and Qz

respectively. Also, p,,p0, are the respective

densities of the membrane and the battens. It
must also be pointed out that half of the MAV
edge was kept rigid to reflect the leading edge
spar. The two systems are also coupled through
the continuity of the velocities:

Vg-ri=w, on Q,

The fully coupled system described herein was
modeled and solved in COMSOL and the results
for the membrane deflection are shown in
Figures 7 and 8.
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Figure 7: Three-dimensional MAV
membrane wing deflection
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Figure 8: Two-dimensional MAV
membrane wing deflection

5. Conclusions

In this work, a coupled computational
methodology to solve problems that involve
fluid-structure interaction has been presented for
various benchmark problems. The problems
considered in this work included a one
dimension problem coupling fluid and structure
with and without control and an application
problem in three dimensions involving MAVs.
The one dimensional problems provide a great
insight into the nature of the coupled behavior of
the interaction between the fluid velocity and the
structural displacement. The importance of the
non-linear term in the fluid equations was
illustrated in the control problem that helped
decrease the error between the prescribed and
computed solutions.
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Flow-structure interaction (FSI)

Solid Fluid Fluid ‘

T r

_ Solid : ©_x (0,T)
Fluid : Q. x (0,T)

2
ou - - - — IOSa \;V —-V.o=b
P — —VAU+(U.V)U+Vp = f ot
ot & =Atr(E)+2us

V.u=0 Z =0.5[VW + (VW) ]




Fluid-Structure Interaction (1D)
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ALE Formulation
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Coupled FSI with Control
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Auxiliary system of PDEs

* |In the fluid domain:
pU —uu, +1.5uu, —Lzo
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Fluid Velocity Profile
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Solid Particle Displacement
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MAV: Membrane Wing Deflection




Experimental Challenges in
MAV Design

Small size

High surface-to-volume ratio

Constrained weight and volume limitations
Low Reynolds number regime

Low aspect ratio fixed to rotary to flapping
wings

Longer flight time
Better range-payload performance
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Model of a flexible MAV wing

Wing Box Battens

Membrane Leading Edge
Material Spar



Computational Model for MAV

Inflow Outflow
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Membrane Wing Deflection
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Membrane Wing Deflection
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